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Types of High Precision Arithmetic

e Double precision (16 digits): Conventional 64-bit IEEE arithmetic.

e Double-Double (32 digits): Can be done by using [EEE arithmetic tech-
niques. Approx. 5 times as expensive as DP.

e Quad-Double (64 digits): Can be done using [EEE arithmetic techniques.
Approx. 5 times as expensive as DD.

e Arbitrary precision (100 to millions of digits): Requires arbitrary precision
arithmetic software.



Integer Relation Detection

Given a real or complex vector x = (x1, 29, -+, x,) an integer relation (IR)
algorithm seeks integers a;, not all zero, such that

axr] + asxs + -+ ayr, = 0

to within the available numerical accuracy:.

e Original IR algorithm found in 1977 by Helaman Ferguson and Rodney
Forcade.

e Current state of art: Ferguson's “PSLQ)" algorithm — recently named one of
ten “algorithms of the century” by Computing in Science and Engineering.

e Very high numeric precision (hundreds or thousands of digits) must be em-
ployed in integer relation calculations.



Applications of PSLQ: Recognizing Numeric Constants

If a is algebraic of degree n, the polynomial satisfied by a can be found by

computing the vector (1, a,a?, -+, a") to high precision, and then applying

PSLQ).
Chaos theory example:

Let By = 3.54409035955 - - - be the third bifurcation point of the logistic map
rri1 = rxi(l — xp). In other words, Bj is the smallest r such that successive
iterates x; exhibit eight-way periodicity instead of four-way periodicity.

Computations using a predecessor algorithm to PSL() found that Bjs is a root
the polynomial

0 = 4913 + 21082 — 604> — 977t 4+ 87 4+ 4445 + 392¢7 — 1935 — 40¢° + 4810 — 12411 4 412

Recently a PSLQ) program found that o = — By(By — 2) satisfies a 120-degree
polynomial, so that By satisfies a 240-degree polynomial.



Applications of PSLQ: Euler Sums

Let ¢(¢) = =52, 5" be the Riemann zeta function, and Li,(x) = 252, 2/5 " the
polylogarithm function. The following were found using PSL() computations:
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Applications of PSLQ: Apery Sums

It has been known for some time, through the research of Apery, that
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These results have led many to suggest that
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for n > 4, might be a simple constant. It has now been shown that S(n) can

be expressed in terms of the Riemann zeta function {(n) and Clausen’s function
M (a,b). A sample evaluation is

8 8 13921
S(9) = 7 [2M(7.1) + SM(5,3) + SC2)IMG,1)| - =)
6211 8101 331

e + 2510 + i) - )
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A Quadrature Example

Using a high-precision numerical quadrature program, Jon Borwein, Greg Fee

and DHB observed that if
\H arctan(v x? 4+ a?) dz
o

x? + @m?.m +1)

then

C(0) = wlog2/8+G/2
C(1) = 7/4—7V2/2 4 3v2arctan(v/2)/2
C(v2) = 57?/96
where G is Catalan’s constant (the third result appeared in the MAA Monthly,

Aug/Sept 2002). These particular results have now led to several general results,
including:

o arctan(vz? + a?) dx 78

\o = ST T arctan(va® — 1) — arctan(vVa* — HL

var+a?(z? + 1) 2v/a? —




Peter Borwein’s Observation on the Binary Digits of log 2

In 1995, Peter Borwein observed that an arbitrary binary digit of log 2 can be
calculated by using a very simple algorithm:

Let {-} denote the fractional part. Then we can write

{20g 2} = T& 3 MW — WOU ﬁ
| k2F =1 k

d 29=F mod k 0o 94—k
=\ X
k=1 k h—dr1 k

2% mod k can be very rapidly evaluated using the binary

algorithm for exponentiation performed modulo &.

e The numerators

e Only a few terms of the second summation need be evaluated.

e All computations can be done with ordinary 64-bit floating-point arithmetic.



A More General Result

Any constant a given by a formula of the type

_ x plk)
bk

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) has the rapid individual digit computation property.

Is there a formula of this type for 77 None was known in 1995.
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The BBP Formula for «

By applying DHB’s PSL(Q) computer program to set of computed constants for
which formulas of this type were known, with the numerical value of 7 appended,
this formula was found for m:

x 1 A 4 2 1 1 v

= Sk+1 8k+d4 8k+5 8k+6

=0 16F
Proof: An exercise in calculus.

Question: Why wasn't this formula discovered 250 years ago?
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Some Other Constants with Base 2 BBP-Type Formulas

log 3

log 7

log*

72 — 6log*
T3
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An Arctan Formula

- 3 L& 1 A 524288 393216 491520 | 163840
an |- = — —
5 21T [ 2022k \40k +2 40k +4 40k +5 ' 40k +8
| 32768 24576 5120 10240 2048
40k +10 40k +12 © 40k +15 ~ 40k +16 = 40k + 18
1024 640 480 128 96
+ + + + -
40k +20 40k +24 40k +25 40k +26 40k + 28
Lo 8 5 6 v
40k +32 40k +34 40k 435 40k + 36

Similar formulas have been found for arctans of numerous other rational

arguments.
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Some Base 3 BBP-Type Formulas

log2 = 2 A ! + ! v
27 =0 81% \4k +1 = 4k +3
1
= L0 —)
, 2 x 1 243 405 81 27
T rE o \(12k 12T (12k £ 22 (12k £ 4?2 (12k +5)
72 9 9 5 1

T2k 162 (12k+ 7 (12482  (12k+10) | (12k + 11)°

V3 < 1 3 1
6v3tan~' || = A v
V3 tan 7 Zom 31 T3t
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Normality

The real number « is normal to base b if every sequence of m digits in the
base-b expansion of o appears with limiting frequency b=,

Widely believed to be normal base b for all bases b:

o T and e.

o log 2 and /2.

e The golden mean 7 = (1 ++/5)/2.
e [yvery irrational algebraic number.

e Many other ‘natural” irrational constants.

But there are no proofs for any of these constants, for any base.

Normality proots exist only for handful of artifically constructed constants, such
as Champernowne’s number: 0.1234567891011121314...
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A Connection Between BBP-Type Formulas and Normality

Theorem: The BBP-type constant

_ x plk)
T bk

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) is normal base b if and only if the sequence z¢ = 0, and
x, = |bxr,_1 |_|% mod 1
q(n)

is equidistributed in the unit interval.

Proof Sketch: Let o, be the base-b expansion of a after the n-th digit.
Following the BBP approach, we can write

= A@Q:H + MMMWv mod1l +E,

where [, goes to zero.
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Two Examples

1. Let zg = 0, and
1
T, = Aw&zL + v mod 1
n
Is (x,,) equidistributed in [0, 1)?
2. Let g = 0 and

120n2 — 89n + 16
512n* — 1024n3 + 712n2 — 206n + 21

Is (x,,) equidistributed in [0, 1)?

r, = |16x,—1 +

mod 1

If answer to Question 1 is “yes”, then log 2 is normal to base 2.

If answer to Question 2 is “yes”, then 7 is normal to base 16 (and hence to base
2 also).

17



A Class of Provably Normal Constants

Using the BBP approach, Richard Crandall and DHDB have now proven normal-
ity for a class of constants, the simplest instance of which is

o 1
@23 = \AMHUH 3h93F
= (0.041883680831502985071252898624571682426096 . . .19

— 0.0ABSE38F634BDA12F684BF35BA731948BOFCDOESEOD . . .15.

a3 was actually proven normal base 2 in a little-known paper by Stoneham in
1977. Crandall and DHB proved normality and transcendence for an uncount-
ably infinite class that includes as 3.

These constants also possess the rapid individual digit computation property.
The googol-th binary digit of s 3 1s zero.
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Overview of the ARPREC Package

e Based on ecarlier MPFUN-77 and MPFUN-90 Fortran packages.
e Code written in C++ for high performance and broad portability.

e C++ and Fortran-90 translation modules that permit conventional C++4 and
Fortran-90 programs to utilize the package with only very minor changes to
source code.

e Arbitrary precision integer, floating and complex datatypes.

e Support for datatypes with differing precision levels.

e Inter-operability with conventional integer and floating-point datatypes.
e Common transcendental functions (sqrt, exp, sin, etc).

e Quadrature routines (for numerical integration).

e PSLQ) routines (for integer relation detection).

e Special routines for extra-high precision (> 1000 digits) computation.
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Structure of ARPREC Multiprecision Data
e An array of 64-bit IEEE floats.

e Word 1: Number of words allocated for array.

e Word 2: Number of mantissa words used; sign is sign of number.
e Word 3: Exponent (powers of 2%9).

e Word 4 through n + 3: Mantissa words, each in the range [0, 2*%).

e Word n + 4 and n + 5: For convenience in arithmetic routines.

20



Exact Arithmetic on 64-Bit IEEE Data

Double + double.
1.s<—ad®b
2. 0+— SO a

3.e— (a6 (s6v)d(bov)

Split.

L.t (22"+1)®ua
2. ap — tS (tSa)
3. Gy <+ a O ay,

Double x double (not needed if system has fused multiply-add).
l.p—a®b

2. (ay;, ajo) < SPLIT(a)

3. (byi, bo) < SPLIT(D)

4. e — ((an @b ©p) ® ani @ b, ® a1, @ bpi) B al, @ by,

Normalize result (two words with 48 bits each).
1. ﬁ\ - @\wﬁw D wmmV o wmm
2.¢/ —(p—p)Be
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Performing High-Precision Multiplications Using FFT's

[fa=(aj, j=0,1,---,n—=1)and b= (b;, 7 =0,1,---,n — 1) are two high-
precision numbers, then their 2n-long product (except for release of carries) is
merely the acyclic convolution of a and b:

Extend a and b by n zeroes, then compute:
2n—1
Cl. — >~ Q@.?AI\

J
where the subscript £ — 7, if negative, is taken to be £ — 5 4+ 2n. These results
can thus be rapidly computed using an FFT:

cx = Fi7'[Fia) - Fi(b)]
where for example

2n—1 ..
NU\AA@v _ ) @\Qlwiu\a\@sv

J
Additional time can be saved by using real-to-complex and complex-to-real

FFTs.
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Improvements from MPFUN to ARPREC

e Improved arithmetic performance: Schemes on previous viewgraph can be
performed as register operations, which are very fast on modern RISC sys-
tems.

e Taylor's series routines: Routines for sine, cosine and exponential reduce
precision as the size of terms decreases.

e Sine/Cosine: Argument is reduced to the nearest multiple of /256, instead

of 7/16.

e ['I'T-based multiplication: A radix-four FFT algorithm is used, instead of
a radix-two FFT.
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Arithmetic Performance: ARPREC vs MPFUN

Arithmetic test loop (400 decimal digit precision):

e MPFUN = 14.78 seconds.
e ARPREC = 10.80 seconds.

Polylogarithmic ladder calculation (50,000 digit precision):

e MPFUN = 1408 CPU-hours on Cray T3E parallel system (32 CPUs).
e ARPREC = 1062 CPU-hours on IBM SP parallel system (64 CPUs).
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Three State-of-the-Art Quadrature Routines

e Gaussian quadrature.
e [irror function quadrature.

e Tanh-sinh quadrature.
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High-Precision Gaussian Quadrature

An integral on [—1, 1] is approximated as the sum

Lif@)de = % wif(z))

where the abscissas x; are the roots of the n-th degree Legendre polynomial
P,(x) on [—1,1], and the weights x; are

—2
(n+ 1) P(wj) P ()

w; =

The abscissas x; are computed using a Newton iteration scheme, with starting
value cos[m(j — 1/4)/(n + 1/2)]. The function P,(x) is computed using an
n-long iteration of the recurrence Py(x) =0, Py(z) =1 and

(k+1)Pryi(z) = 2k + DaPy(z) — kP (z)
for £ > 2. The derivative P (x) is computed as
P(x) = n(zly(z) — Piaa(z))/(@* — 1)
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The Euler-Maclaurin Formula and High-Precision Quadrature

Let h =(b—a)/n and z; = a + jh. Then

[7e)de = S+ 100 + 1S Floy
#8802 gy ) 4

where the error term F is smaller than A>T /(2m+2)! times a certain definite
integral that does not depend on n or A.

The E-M formula also applies for tunctions defined on an infinite interval, where
f(x) and all its derivatives tend rapidly to zero for large . In this case, we have

[Z fl)yde = b S fla)+E

j=—o0

where the error term £ tends to zero more rapidly than any power of A, as h
is decreased.
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The Error Function Quadrature Scheme

Let g(x) = erf(z) = (2//7) Iy e="" dt. Note that erf(z) ranges monotonically
from -1 to 1. Thus we can write

[\ flayde = [ flg(t)g' (1) di

Since ¢'(t) = 2//7 - et coes to zero rapidly for large ¢, the integrand on the
RHS is, for many f(x) € C*°(—1,1), a nice bell-shaped curve for which the
E-M formula applies. Thus we can write

[ fw)de & b 5 flglh))g(kh) ~ b %Sl

k=—o0

where x; = erf(kh) and wy = 2/y/7 - e~k The 2. and w; values can be
pre-computed.

The tanh-sinh quadrature scheme uses the function ¢g(¢) = tanh(7w/2 - sinh ¢),
whose derivatives tend to zero even faster.
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Test Problems for Quadrature Routines

Well-behaved continuous functions on finite itervals:

\%iomﬁl_.ﬂv& = 1/4 2: \%%m&oﬂmzﬂ& = (m — 24 2log2)/12
1 arctan(y/2 + t2)
(1 +12)v2 4 ¢

Continuous functions on finite itervals, but with a vertical derivative at an endpoint:

1 1
50 | Vitlogtdt = —4/9 6: [ V1I—t2dt = m/4

Functions on finite intervals with an integrable singularity at an endpoint:

3: [Pelcostdt = ("2 —1)/2 4: \o dt = 57°/96

0

T HLZHH 8: [ logt?dt =

log(cost)dt = —mlog(2)/2 10: oim Viantdt = wv/2/2

WSSOQOBm on an infinite interval:

o 1
| ——gdt = 7/2 12 : \©|&n/\m

L+t
13 : \ooomL\m& = /2

g - ﬁ.\w

Oscillatory functions on an infinite interval:

00 oo SINT
14 : \o e 'costdt = 1/2 15: | ﬁ& = 7/2
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Performance of Quadrature Routines on Test Problems

QUADGS QUADERF QUADTS
Prob. | Level | Time | Error | Level | Time | Error | Level | Time | Error
Init| 9 |2755.08 9 |138.281 9 |48.21
1] 6 8.90[107*2| 9 60.43 [ 10~*1| 7 |13.61|1073%
21 6 9.35[107*2| 9 39.91 1072 | 8 |23.78|10~*!
31 5 44311070 9 48.04 [ 107419 7 112.76|0
41 6 9.15[107*% | 9 ]100.07|107* | 8 |40.97|10~*!
519 79.88 | 10~ 1 9 72971107V 7 116.70 | 10740
6| 9 3.66 | 10712 9 4.00 11070 7 0.91 | 107392
719 4.4511074 8 2451107210 6 0.56 | 107196
8| 9 77.731107° 9 | 69.73| 107 7 ]16.14| 10747
91 9 103.29 | 1077 9 7459|1074 7 118.94|1073%
101 9 33.13|10~* 8 7.96 107210 6 2.48 | 10719
11] 6/6 0.57 0 9/9 5381107191 8/8 | 2.37|0
121 9/9 96.89 | 10~* 8/9 | 63.56 107133 | 6/9 |45.85 1072
131 5/9 48.40 107311 9/9 | 7026|1077 | 7/9 |41.89| 1070
141 4/9 79.18 1107121 9/9 [145.891107% | 7/9 |86.80 | 1071
151 5/9 36.22 11071 | 9/9 | 4411|1077 | 7/9 |33.62| 107"
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The Experimental Mathematician’s Toolkit
e Interactive tool based on ARPREC.

e All common arithmetic expressions — use Mathematica format.

e Many common math constants — m, e, log2, Catalan’s constant, Euler’s
gamma constant, etc.

e Many common math functions — sin, cos, exp, sqrt, erf, zeta, etc.
e Quadrature, on finite or infinite intervals (choice of 3 routines).
e Summations, with finite or infinite limits.

e PSLQ) calculations (choice of 1-, 2- or 3-level multi-pair routines).

Test program now available from author.
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For Full Details

e David H. Bailey, Peter B. Borwein and Simon Ploufte, “On The Rapid Com-
putation of Various Polylogarithmic Constants,” Mathematics of Compu-
tation, vol. 66, no. 218, 1997, pp. 903-913.

e David H. Bailey, “A Compendium of BBP-Type Formulas,” 2002.

e David H. Bailey and Richard E. Crandall, “On the Random Character
of Fundamental Constant Expansions,” Experimental Mathematics, June
2001.

e David H. Bailey and Richard E. Crandall, “Random Generators and Normal
Numbers,” 2002.

e David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, “ARPREC:
An Arbitrary Precision Computation Package,” Oct 2002.

e David H. Bailey, “A Comparison of Three High-Precision Quadrature Schemes,”
Oct 2002.

Papers: http://www.nersc.gov/ “dhbailey/dhbpapers
Computer code: http://www.nersc.gov/ “dhbailey/mpdist
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